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Abstract 24	

The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), both 25	

operational at NOAA’s National Centers for Environmental Prediction (NCEP) 26	

use the Thompson mixed-phase bulk cloud microphysics scheme.  This scheme 27	

permits predicted surface precipitation to simultaneously consist of rain, snow 28	

and graupel at the same location under certain conditions.  Here we describe the 29	

explicit precipitation-type diagnostic method used in conjunction with the 30	

Thompson scheme in the RAP and HRRR models. The post-processing logic 31	

combines the explicitly predicted multi-species hydrometeor data and other 32	

information from the model forecasts to produce fields of surface precipitation 33	

type that distinguish between rain and freezing rain, and to also portray areas of 34	

mixed precipitation.   This explicit precipitation-type diagnostic method is used 35	

with the NOAA operational RAP and HRRR models.  Verification from two winter 36	

seasons from 2013-2015 is provided against METAR surface observations. An 37	

example of this product from a January 2015 south-central United States winter 38	

storm is also shown.			 39	

	 	40	
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1. Introduction 41	

Diagnosis of precipitation type from weather forecast model predictions is 42	

important for public forecasting of winter storms, and also for air and surface 43	

transportation, energy, hydrology, and other applications.   The advent of mixed-44	

phase bulk microphysics schemes in some NOAA operational numerical 45	

prediction models (Rapid Update Cycle, RUC – Benjamin et al., 2004a,b, Rapid 46	

Refresh, RAP – Benjamin et al. 2016, HRRR – Alexander et al. 2016) enabled a 47	

relatively direct diagnosis of precipitation type (e.g., rain, snow, ice pellets (IP), 48	

freezing rain and drizzle (FZ), mixed types) at the surface.   Since 1998, the RUC 49	

model running at NOAA National Centers for Environmental Prediction (NCEP) 50	

has used a bulk scheme in which separate mixing ratios for cloud water, rain 51	

water, ice, snow and graupel are predicted at each 3-d grid point.  From 2005-52	

2012, the scheme used in RUC was as described by Thompson et al. (2004).   53	

The RAP, which replaced the RUC at NCEP on 1 May 2012, uses a more 54	

advanced version (Thompson et al. 2008).  RAP version 3 and HRRR version 2, 55	

implemented at NCEP in 2015 (Benjamin et al. 2016), use an aerosol-aware 56	

version of the Thompson scheme (Thompson and Eidhammer 2014). This use of 57	

multi-species mixed-phase microphysics in the RUC, RAP and HRRR models 58	

was motivated by a need to improve forecast skill for clouds in general, and 59	

supercooled liquid water in particular, for aviation requirements.  Here, we 60	

describe the diagnostic precipitation-type (p-type) scheme used in the NCEP 61	

RAP version 3 and HRRR version 2 (Alexander et al. 2016) as of late 2015.   62	
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This p-type scheme is a recent alternative to profile-based diagnostic methods 63	

summarized in Section 2.  Ikeda et al. (2013) presented verification results on p-64	

type forecasts from an earlier version of HRRR as of 2012.  This paper is an 65	

expansion and correction on their Table 1 and includes an examination of more 66	

recent explicit p-type results. 67	

 68	

The RAP and HRRR models use the community NCEP Unified Post-Processor 69	

(UPP) also used for other models.  Options have been added to UPP including 70	

ceiling (cloud base height), visibility, and p-type, designed for microphysics 71	

schemes with multiple prognostic hydrometeor-species variables.  In this paper, 72	

we describe the UPP option for this explicit, multi-species diagnostic of p-type, 73	

currently applied only in the RAP and HRRR. 74	

 75	

2. Other precipitation-type diagnostic schemes  76	

Well before the introduction of mixed-phase microphysics schemes into some 77	

operational numerical weather prediction models, successful diagnostic 78	

techniques were designed using implicit assumptions about microphysical 79	

processes to allow estimate of p-type.  These procedures can be grouped into: 1) 80	

algorithmic or decision-tree approaches based on an observed or predicted 81	

sounding; and 2) statistical procedures that make use of a training dataset to 82	

derive a set of equations that is then applied to predicted fields.   All of the 83	

diagnostic schemes discussed here are for discrete yes/no identification of each 84	
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p-type, the same yes or no designation in observer guidelines in the NOAA 85	

Federal Meteorological Handbook No. 1 (OFCM, 2005, Chapter 8).   86	

 87	

a. Algorithmic approaches 88	

A number of simple but effective algorithms have been developed that use as 89	

input model-forecast profiles of temperature and relative humidity from the 90	

surface upward to the level of assumed precipitation-generating layers aloft.  The 91	

algorithms used most often by forecasters in North America are those developed 92	

by Ramer (1993) and Baldwin et al. (1994).  A description of Ramer’s algorithm 93	

can be found in Bourgouin (2000), Wandishin et al. (2005) and DeGaetano et al. 94	

(2008).  (The latter paper introduces some modifications to Ramer for application 95	

to forecasts of ice accretion.)  In essence, Ramer’s approach is to define an ice 96	

fraction of the precipitation in a precipitation-generation layer and, based on the 97	

temperature of that layer, assume the ice fraction of this precipitation is either 0 98	

(liquid) or 1 (frozen).  Then, for the frozen case, a decision tree that depends on 99	

the wet-bulb temperature profile is used to modify the ice fraction as a function of 100	

height between the base of the generating layer and the ground.  The value of 101	

the ice fraction then determines p-type.   102	

 103	

The Baldwin et al. algorithm also considers the vertical profile of wet-bulb 104	

temperature below saturated layers where precipitation is presumed to form.  If 105	

this precipitation is presumed frozen, the p-type at the surface is obtained by 106	
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using the vertically integrated departure of the wet-bulb temperature from 0°C in 107	

various layers and the temperature in the lowest model layer.  A more complete 108	

description can be found in Bourgouin (2000) and Wandishin et al (2005).  109	

 110	

b. Statistical approaches 111	

Among statistical approaches of which we are aware, the earliest to use upper-112	

air data is that of Wagner (1957).  Using surface aviation observations of 113	

precipitation type and collocated rawinsonde observations (about 40 stations), 114	

Wagner compared the thickness of the 1000-500-hPa layer to the occurrence of 115	

frozen precipitation and determined the thickness values corresponding to a 50% 116	

probability of frozen precipitation.  The thickness values so obtained are still used 117	

by many forecasters as a point of comparison with predicted thickness values. 118	

 119	

The Model Output Statistics (MOS) approach for p-type was first applied by 120	

Bocchieri (1979, 1980) and Bocchieri and Maglaras (1983) to the then-121	

operational Limited-area Fine Mesh (LFM) model.  Since then, there have been 122	

many upgrades, and MOS is now applied to output from the Global Forecast 123	

System (GFS) as well as the North American Mesoscale (NAM) models for 124	

precipitation type purposes. Perfect-prog (Vislocky and Young 1989) approaches 125	

include Keeter and Cline (1991) and Bourgouin (2000).  Keeter and Cline use 126	

radiosonde 1000–700-, 1000–850- and 850–700-hPa thickness values at 127	

Raleigh-Durham, NC regressed against co-located surface observations.  The 128	
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approach of Bourgouin (2000) classifies sounding temperature profiles into 4 129	

groupings (freezing rain or ice pellets, ice pellets or rain, snow or rain, and snow) 130	

and derives statistics separately for each grouping.  Separate positive and 131	

negative areas on a thermodynamic diagram between the 0°C isotherm and the 132	

observed temperature profile are computed for each sounding in the training 133	

dataset and are determined to be important predictors.  Bourgouin considers his 134	

approach most applicable to synoptic situations characterized by broad synoptic-135	

scale lift leading to widespread, deep saturation. Manikin (2005) combined the 136	

Baldwin, Ramer, Bourgouin, and revised Baldwin algorithms into a single 137	

predominant p-type value now used often in NCEP models 138	

(http://www.wpc.ncep.noaa.gov/wwd/impactgraphics/ ). 139	

 140	

A recent contribution by Schuur et al. (2012) shares conceptual aspects with the 141	

earlier algorithmic approaches as well as that of Bourgouin in that it classifies 142	

vertical profiles (model or observed) according to the number of 0°C crossings by 143	

the wet-bulb vertical temperature profile together with the 2-m temperature.  It 144	

considers local extrema of this profile between the intermediate 0°C crossings.  145	

This algorithmic approach could stand alone, but is intended for use in 146	

conjunction with polarimetric radar, in which the radar polarimetric parameters 147	

indicate whether a bright band (i.e., a melting layer) exists.  If such a layer is 148	

detected, then precipitation type at the ground is expected to be rain, freezing 149	

rain, ice pellets or a mixture of freezing rain and ice pellets, or possibly even wet 150	
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(melting) snow if the melting level is detected at the lowest elevation scan, but 151	

not dry snow. 152	

 153	

3. Explicit diagnostic scheme for precipitation type 154	

In the post-processing algorithm described here, separate yes/no indicators are 155	

diagnosed for each of 4 different p-type categories: rain, snow, ice pellets 156	

(including graupel) and freezing rain.  These yes/no indicators are determined 157	

from the explicit 3-d hydrometeor mixing ratios reaching the ground calculated in 158	

the cloud microphysics parameterization (Thompson et al. 2008, Thompson and 159	

Eidhammer 2014) in the RAP or HRRR models (or from the Thompson et al. 160	

2004 scheme in the RUC model).  The hydrometeor fields predicted by the 161	

Thompson schemes are mixing ratios of cloud water (droplets), rain, cloud ice, 162	

snow and graupel, as well as number concentration of raindrops and cloud-ice 163	

particles.2  These hydrometeor mixing ratio prognostic fields undergo horizontal 164	

transport as well as vertical transport at appropriate fall speeds.  The p-type 165	

diagnostic algorithm described here makes use of the explicit precipitation of 166	

rain, snow and graupel predicted to reach the surface by the model.  Using 167	

continuous model-provided explicit fields of hydrometeor mixing ratios and fall 168	

rates (mass accumulation at ground per unit time), this algorithm estimates 169	

thresholds for these parameters to approximate the same discrete yes/no 170	

																																																								
2	The number concentration of cloud water drops is also predicted in the 
Thompson-Eidhammer aerosol-aware scheme but is not used in the precipitation 
identification described here.	
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observer guidelines in the NOAA Federal Meteorological Handbook No. 1 171	

(OFCM, 2005, Chapter 8).   172	

 173	

The explicit p-type scheme described here depends on the microphysics scheme 174	

to provide a “first guess” of precipitation types reaching the ground.  (Note that 175	

because rain, snow and graupel are each predicted separately by the forecast 176	

model, i.e., each possessing separate mixing ratios and fall speeds, it is possible 177	

for the model to predict that two or more of these will reach a given point on the 178	

ground simultaneously.)  For each allowable p-type in this diagnostic scheme 179	

(rain, snow, ice pellets, freezing rain), the model output within each grid column 180	

(not just at the surface) is used to derive a separate yes/no (1/0) decision on 181	

whether that type is reaching the ground. These p-type values from the post-182	

processing are not mutually exclusive, except for rain vs. freezing rain. More than 183	

one value (as many as three) can be yes (1) at a given grid point at a given time.  184	

 185	

a. Diagnostic logic flowchart for precipitation types 186	

The sequence of the diagnostic logic is depicted completely in the flowchart in 187	

Fig. 1, with further discussion below.  The rationale for this scheme is provided in 188	

the following subsection.  Each model grid column is considered separately, and 189	

all precipitation rates below are at the ground and in liquid-water equivalent.  190	

After determining if there was even a minimal amount of precipitation during the 191	

last hour (including that from parameterized convection, if appropriate, using 0°C 192	
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as a snow/rain threshold), the explicit p-type diagnosis logic is treated for 3 193	

decisions:  rain vs. freezing rain/drizzle, snow vs. rain, and ice pellets vs. rain or 194	

snow.  Each treatment allows consideration of instantaneous precipitation (via fall 195	

rates for rain, snow, or graupel) and precipitation over last hour. 196	

 197	

Some of the p-type rules are based on a snow fraction (SF) defined as mass of 198	

snow accumulation divided by combined mass of snow and rain.  SF is 199	

calculated at each grid point for accumulation over some previous forecast 200	

period.   These precipitation accumulations are updated each time step from the 201	

near-surface mixing ratio times the fall speed, as described in Thompson et al 202	

(2008) and Thompson and Eidhammer (2014).  In the RAP and HRRR, the 203	

previous forecast period is currently 1 h but can be set to shorter time periods 204	

(e.g., 15 min).     205	

 206	

1)  Snow vs. rain   207	

If SF > 0.25 and either current snow precipitation rate > 0.00072 mm/h (0.2 x 208	

10-9  m s-1) (liquid equivalent) or total precipitation of rain plus snow during the 209	

previous hour > 0.01 mm, snow is diagnosed as long as current 2-m 210	

temperature (from the model forecast) < 3°C.  If 2-m temperature ≥ 3°C, rain is 211	

diagnosed instead. 212	

2)  Rain vs. freezing rain (FZ) 213	
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If SF < 0.6 and either the current rain rate at ground is at least 0.01 mm/h or 214	

there has been at least 0.01 mm total precipitation of rain plus snow during the 215	

previous hour, then rain or freezing rain is diagnosed.  If the 2-m temperature < 216	

0°C, freezing rain/drizzle is diagnosed; otherwise, rain is diagnosed. 217	

3)  Ice pellets and related dependencies 218	

Dependencies regarding IP diagnosis are more complicated out of the attempt 219	

to match observing guidelines as described earlier in section 3.  If current fall 220	

rate for graupel > 0.0036 mm/h (1.0 x 10-9 ms-1), ice pellet (IP) precipitation is 221	

generally diagnosed, but with further dependencies including 2-m temperature 222	

and relative instantaneous fall rates for graupel, rain, and snow.  First, for IP, 223	

the graupel fall rate at the surface must be greater than that for snow; 224	

otherwise, S is diagnosed and not IP. Also to limit IP diagnosis to situations 225	

with conditions normally expected, there must be a level aloft with rain mixing 226	

ratio > 0.005 g kg-1.    (Note: With a previous maximum rain mixing ratio set as 227	

> 0.05 g kg, IP was rarely diagnosed (Elmore et al. 2014), resulting in this 228	

modification.) If, in addition, the fall rate for graupel is greater than that for rain, 229	

IP only is diagnosed, not FZ and not rain.  If 2-m temperature > 3°C, IP is not 230	

diagnosed, thus not allowing IP to include the condition of convectively 231	

produced hail.  232	

 233	

b. Rationale for explicit precipitation type diagnosis  234	

Although the model generally produces a dominant p-type, in the difficult cases 235	

of cold-season mixed precipitation, simply using the p-types directly from the 236	
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model without any qualification as to the surface accumulation rate of that 237	

particular species leads to a confusing picture when displayed as a 238	

superposition of binary (0/1) fields.  This is because at 2-m temperatures not 239	

far from 0°C, the physical solution within a multi-species microphysics scheme 240	

can give small amounts of more than one hydrometeor species falling to the 241	

surface in the model. Thus, it was necessary to introduce post-processing logic 242	

into the classification scheme for appropriate thresholds of multi-species fall 243	

rate.   244	

 245	

Thresholds for SF and 2-m temperature in the p-type diagnostic logic were 246	

subjectively estimated (no effect on the actual forecast model solution) against 247	

observations of precipitation type from ASOS (Automated Surface Observing 248	

System) reports to avoid the problem of diagnosing too large (or too small) 249	

areal coverage of mixed precipitation (e.g., rain/snow or freezing rain/ice 250	

pellets/snow).  It is also necessary to make use of the model forecast of 2m 251	

temperature to identify situations where rain is falling at temperatures < 0°C, 252	

and to limit IP diagnosis to formation in cold-season storms and exclude 253	

convectively produced hail.   Allowing snow p-type identification with 2-m 254	

temperature up to 1°C accounts for wet-bulb effect, which is already identified 255	

in the Thompson microphysics via energy exchange between snow and 256	

environmental air as the snow falls at its fall speed. 257	

 258	
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In order to increase the likelihood of successfully predicting freezing drizzle at 259	

the surface, the more recent Thompson microphysics schemes (Thompson et 260	

al. 2008, Thompson and Eidhammer 2014) include a two-moment rain 261	

component in order to better describe the collision-coalescence process in 262	

clouds that are mainly composed of liquid particles but at temperature < 0°C 263	

throughout the cloud depth.  264	

 265	

We also note that the precipitation rates used currently for the model explicit p-266	

type diagnosis are 1) instantaneous, and 2) have a minimum threshold (0.0001 267	

mm/h) much lighter than sensible by current measurement methods.   The use 268	

of the instantaneous precipitation rates means that this diagnostic method 269	

could be expanded into higher frequency products or into a future PDF p-type 270	

field.   The very small precipitation rate thresholds were designed to capture 271	

very light drizzle or light snow events, even at the expense of showing a bias 272	

vs. ASOS-level-sensitivity for precipitation types (not shown).  Thériaux et al 273	

(2006) and Thériaux and Stewart (2010) considered a p-type fraction but did 274	

not address how to approximate observer guidelines for yes/no p-type 275	

identification. 276	

 277	

4. Case study and 2015 validation 278	

a. Case example  279	
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A brief example is shown to illustrate application of the explicit p-type diagnosis 280	

in Figs. 2-4 for a winter storm forecast valid at 1600 UTC 1 January 2015. 281	

Figure 2(a,b) shows p-type diagnosed from a RAP (13 km) 1-h forecast with 282	

areas of snow (S), freezing rain, and ice pellets from New Mexico across 283	

northern Texas with rain over southern Texas. Smaller areas of mixed 284	

precipitation types are shown over northern Texas to the Arkansas-Louisiana 285	

border in the 1-h forecast with the explicit p-type diagnosis, including S-FZ, FZ-286	

IP and R-IP mixtures.  The total 1-h precipitation is added in Fig. 2b, indicating 287	

the superset of possible areas for p-type assignment (gray) and areas of 288	

heavier precipitation (>0.1 in/h in light green), usually for rain but some for FZ 289	

and IP.  A breakdown of each p-type forecast area is added in Fig. 3 to see the 290	

specific coverage areas of each p-type. The METAR (Meteorological 291	

Aerodrome Report) observations of p-type valid at the forecast valid time are 292	

shown in Fig. 4.   Freezing rain observations in Fig. 4 are generally within the 293	

FZ forecast area evident in Figs. 2 and 3. The rain-snow line in observations 294	

(Fig. 4) is very close to that diagnosed for the 1-h RAP forecast.   Some snow 295	

and FZ reports are shown in the Dallas-Fort Worth area (Fig. 4), similar to the 296	

mixed S-FZ area forecast just west of those cities.   A freezing rain report (Fig. 297	

4) at 1500 UTC in central Texas (Abilene) was covered by the forecast FZ area 298	

in Figs. 2 and 3.  FZ was diagnosed near but not covering the Lubbock FZ 299	

report in western Texas.  The areal coverage in the forecast, especially for 300	

snow and freezing rain, is larger than shown in observations, due to the very 301	
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light precipitation threshold of 0.0001 mm/h, well below the measurable 302	

minimum of about 0.25 mm/h.   Areas of 1-h precipitation (supersets of the 303	

areas of instantaneous precipitation) are also shown for rain, snow, and 304	

graupel in Fig. 5, the starting point for the algorithm.  The value added of 305	

applying the explicit p-type algorithm can be seen in comparing Fig. 5 with Fig. 306	

3 (and in Fig. 2b).  The p-type algorithm identifies areas of ZR and limits R, S, 307	

and IP assignment by the temperature, precipitation intensity, and other 308	

constraints shown in the logic flow in Fig. 1 and described in Section 3.  309	

 310	

For comparison with another p-type diagnostic, Fig. 6 shows the results from 311	

the dominant p-type (Manikin 2005) combining Baldwin, Ramer, Bourgouin, 312	

and revised Baldwin techniques using gridded data from the same RAP 1h 313	

forecast shown in Fig. 2 and 3 for the explicit p-type diagnostic described in 314	

this paper.  The general coverage is slightly larger with the dominant p-type in 315	

Fig. 6 (any precipitation greater than zero qualifies).    The dominant p-type 316	

(Fig. 6) also shows a significant area of ice pellets in western Texas not shown 317	

with the explicit p-type diagnosis.   A sounding for Lubbock, TX (Fig. 7) from 318	

the same common RAP 1-h forecast grid used for both p-type diagnoses 319	

indicates a saturated level above 0°C that could support IP, although the 320	

explicit p-type based on Thompson microphysics indicated snow with 321	

occasional mixed ZR.  Observations from 1400-1900 UTC showed only ZR 322	

and S observations in western Texas (only 1600 UTC shown in Fig. 4).  323	
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Generally fewer details are shown in Fig. 6 (dominant) than Fig. 2 (explicit), 324	

including the freezing rain in western Texas and snow reports near the Dallas 325	

area.  The dominant p-type scheme also cannot show mixed precipitation, by 326	

definition, but this condition is diagnosed with the explicit p-type scheme in Fig. 327	

2 in some areas in northern Texas.  This comparison is qualitative and 328	

suggests that the explicit p-type diagnosis is credible. 329	

 330	

 b. Validation of explicit 1h p-type forecasts from HRRR and RAP 331	

Probability of detection for 1h RAP (ESRL experimental) p-type forecasts is 332	

presented in Fig. 8 over a 24-month period including two winter seasons using 333	

the nearest 13-km RAP grid point to METAR observation location.   The 334	

probability of detection for occurrence events (PODy) is ~0.9 in all of the 24 335	

months over the conterminous US for rain and about 0.8-0.9 for snow over the 336	

same period during winter months.  PODy for IP ranges from 0.3 to 0.55 (most 337	

common month- February) and slightly lower for FZ.    The PODy for IP from 338	

this diagnostic is far higher than that shown in Elmore et al. (2015) who used 339	

RAP results not including the IP algorithm change in the ESRL version in 340	

January 2013. Both IP and FZ usually occur in geographically limited areas, so 341	

high PODy is difficult to achieve in real-data modeling.   The deficiency in 342	

PODy for IP and FZ is likely due to errors in temperature, water vapor, and 343	

hydrometeor initialization.   The number of IP and FZ events are rare: for 344	

instance, during February 2015, for METARs within the CONUS area including 345	
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southern Canada, the total number of reports was about 60,000 for snow, 346	

30,000 for rain, 2000 for freezing drizzle/rain, and 400 for ice pellets.  As 347	

mentioned at the end of section 3, the p-type diagnostic method uses a 348	

minimum threshold (0.0001 mm/h) much lighter than sensible by current 349	

measurement methods (minimum 0.25 mm/h), resulting in a high False Alarm 350	

Ratio (FAR) vs. METAR observations (Fig. 9).3   The overall FAR for 351	

measurable (0.25 mm) precipitation for RAP vs. METARs is depicted in Fig. 352	

10, showing an overall FAR of about 0.35-0.40, much lower than that shown in 353	

Fig. 9 with the far lower threshold for the p-type algorithm designed to capture 354	

very light but significant freezing precipitation events. 355	

 5. Conclusions   356	

The explicit p-type diagnostic scheme described here is a relatively new 357	

approach applicable with explicit model forecasts of rain, snow, and graupel 358	

precipitation at the surface.  This scheme has been applied to NOAA 359	

operational models that use the Thompson cloud and precipitation 360	

microphysics, specifically, the HRRR and RAP, and before 2012, with the 361	

RUC. This scheme was shown to provide effective results in a 2-year 362	

																																																								
3	It should be noted that the Automated Surface Observation System (ASOS) 
used at METAR sites currently does not have the ability to detect IP.  This 
precipitation type is nominally only reported when an ASOS observation is 
augmented by a human observer, partially accounting for the paucity of IP 
reports.  	



	 18	

evaluation and in a winter storm case study.  This scheme has been used at 363	

NCEP in its hourly updated models (RUC, RAP, HRRR) since 2005. 4     364	

 365	

This explicit diagnosis of p-type from the RAP and HRRR is directly linked with 366	

the multi-species cloud microphysics.   Uncertainty in forecast thermodynamic 367	

structure is obviously a source of error in p-type forecasts using this diagnostic 368	

method, as shown for other methods (Thériaux et al. 2006, Reeves et al. 369	

2014). Probabilistic p-type forecasts are an obvious extension of this explicit p-370	

type algorithm, using time-lagged and explicit ensembles of RAP, HRRR 371	

and/or other models with multi-species cloud microphysics schemes.   Explicit 372	

p-type forecasting accuracy is expected to further improve with assimilation of 373	

dual-polarization radar with diagnostic of hydrometeor type, a direction being 374	

taken in RAP and HRRR data assimilation development. 375	

 376	

It should be noted that the algorithm discussed here is intended for wintertime 377	

application.  The Thompson microphysics scheme (both the 2008 and 2014 378	

versions) does not have a separate hail category but, in situations conducive to 379	

deep convection, will sometimes produce graupel precipitation during the warm 380	

season when used within cloud permitting forecast models such as the HRRR.  381	

																																																								
4		Occurrence of mixed snow/rain was excessively diagnosed with this scheme 
until a correction to a snow fraction error in January 2011.   The scheme as 
described here, including the January 2011 correction also noted in Ikeda et al 
(2013), was incorporated into the initial implementation of the RAP at NCEP on 1 
May 2012.   
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Work to introduce a hail-size algorithm into the Thompson microphysics for 382	

warm-season forecast applications will be discussed elsewhere. 383	

  384	
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FIGURE CAPTIONS 486	

 487	

Figure 1.  Flowchart describing the diagnostic logic for determination of 488	

precipitation type. (Bold letters in tan boxes: (FZ, IP, R, S) = (freezing rain, ice 489	

pellets, rain, snow).  Ptot, ptot-rs and psnow are the total, rain plus snow only (no 490	

graupel), and snow only (water-equivalent) precipitation, respectively, 1h 491	

indicating over the last hour.  Prate is the instantaneous fall rate for different 492	

hydrometeor types (r – rain, s – snow, g – graupel).  The maximum rain mixing 493	

ratio in the column is represented by Max(qr). 494	

Figure 2.   Precipitation type (colored hatched lines: snow - blue horizontal, rain 495	

– green vertical, freezing rain – red sloping upward to right, ice pellets – lavender 496	

sloping downward to right) from a 1-h forecast from an experimental version of 497	

the Rapid Refresh (RAP) using the explicit diagnostic method.  The RAP 1-h 498	

forecast is valid at 1600 UTC 1 January 2015 and was initialized at 1500 UTC, 1 499	

h earlier.  Accumulation (inches; shading) is shown in top figure but not on 500	

bottom.  Note that precipitation type is indicated for areas with 1-h precipitation 501	

(water equivalent) less than 0.01 in (0.25 mm) since p-type can be diagnosed 502	

with 1-h precipitation as low as 0.0001 mm.   Circles shown are for major 503	

airports.  a) Without any total 1-h precipitation.  b)  With total 1-h precipitation 504	

(water equivalent) in inches.	  505	
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 506	

Figure 3.   Same as Fig. 2 but with precipitation-type forecasts shown separately 507	

for each p-type with rain (upper left), snow (upper right), freezing rain (lower left), 508	

and ice pellets (lower right).    509	

Figure 4.   Surface present weather observations including precipitation type 510	

valid at 1500 (top) and1600 UTC (bottom) 1 January 2015, courtesy of Plymouth 511	

State University (http://vortex.plymouth.edu/myo/sfc/pltmap-a.html ).  Weather 512	

symbols are described in http://www.meteor.wisc.edu/~hopkins/aos100/sfc-513	

anl.htm . 514	

Figure 5.    Same as Fig. 3, but for areas of non-zero 1-h precipitation in the form 515	

of rain, snow, and graupel.  516	

	517	
Figure 6.  Same as Fig. 2 but using the dominant p-type diagnostic (Manikin 518	

2005) combining Baldwin, Ramer, Bourgouin, and revised Baldwin diagnostics. 519	

 520	

Figure 7.   Sounding skew-T profile of temperature and moisture at Lubbock, TX, 521	

for 1-h RAP forecast valid at 1600 UTC, same RAP run shown in Figs. 2 and 5. 522	

 523	

Figure 8.  Probability of detection for 4 different precipitation types, rain (red), 524	

snow (blue), freezing rain/drizzle (orange), ice pellets (gray) from 1-h forecasts 525	

from the ESRL experimental 13-km Rapid Refresh as verified against METAR 526	

observations vs. nearest single 13-km grid points.  Results are averaged over 30-527	
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day periods including 2 winters over the period from August 2013 through 15 528	

December 2015. 529	

	530	
Figure 9.   Same as Fig. 8 but for False Alarm Ratio.   The explicit p-type is 531	

applied for 1-h precipitation as low as 0.0001 mm/h to capture very light freezing 532	

precipitation whereas METAR observation precision is limited to a minimum of 533	

0.25 mm/h. 534	

Figure 10.  Same as Fig. 9 (False Alarm Ratio) but for 1-h total precipitation of at 535	

least 0.01 inches/h (0.25 mm/h).  Values are for 60-day averages. 536	

 537	

 538	

	 	539	
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Figure 2.   Precipitation type (colored hatched lines: snow - blue horizontal, rain 
– green vertical, freezing rain – red sloping upward to right, ice pellets – lavender 
sloping downward to right) from a 1-h forecast from an experimental version of 
the Rapid Refresh (RAP) using the explicit diagnostic method.  The RAP 1-h 
forecast is valid at 1600 UTC 1 January 2015 and was initialized at 1500 UTC, 1 
h earlier.  Accumulation (inches; shading) is shown in top figure but not on 
bottom.  Note that precipitation type is indicated for areas with 1-h precipitation 
(water equivalent) less than 0.01 in (0.25 mm) since p-type can be diagnosed 
with 1-h precipitation as low as 0.0001 mm.   Circles shown are for major 
airports.  a) Without any total 1-h precipitation.  b)  With total 1-h precipitation 
(water equivalent) in inches.	  
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Figure 3.   Same as Fig. 2 but with precipitation-type forecasts shown separately 
for each p-type with rain (upper left), snow (upper right), freezing rain (lower left), 
and ice pellets (lower right).    

 



	 31	

	 

 

 
Figure 4.   Surface present weather observations including precipitation type 
valid at 1500 (top) and 1600 UTC (bottom) 1 January 2015, courtesy of Plymouth 
State University (http://vortex.plymouth.edu/myo/sfc/pltmap-a.html ).  Weather 
symbols are described in http://www.meteor.wisc.edu/~hopkins/aos100/sfc-
anl.htm. 
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Figure 5.    Same as Fig. 3, but for areas of non-zero 1-h precipitation in the form 
of rain, snow, and graupel.  
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Figure 6.  Same as Fig. 2 but using the dominant p-type diagnostic (Manikin 
2005) combining Baldwin, Ramer, Bourgouin, and revised Baldwin diagnostics. 
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Figure 7.   Sounding skew-T profile of temperature and moisture at Lubbock, TX, 
for 1-h RAP forecast valid at 1600 UTC, same RAP run shown in Figs. 2 and 5.  
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Figure 8.  Probability of detection for 4 different precipitation types, rain (red), 
snow (blue), freezing rain/drizzle (orange), ice pellets (gray) from 1-h forecasts 
from the ESRL experimental 13-km Rapid Refresh as verified against METAR 
observations vs. nearest single 13-km grid points.  Results are averaged over 30-
day periods including 2 winters over the period from August 2013 through 15 
December 2015. 
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Figure 9.   Same as Fig. 8 but for False Alarm Ratio.   The explicit p-type is 
applied for 1-h precipitation as low as 0.0001 mm/h to capture very light freezing 
precipitation whereas METAR observations are limited to a minimum of 0.25 
mm/h. 
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Figure 10.  Same as Fig. 9 (False Alarm Ratio) but for 1-h total precipitation of at 
least 0.01 inches/h (0.25 mm/h).  Values are for 60-day averages. 


